Honours/PhD Projects

From Paulsen Laboratory
Revision as of 00:38, 4 October 2011 by Liam (Talk | contribs)
Jump to: navigation, search


Microbial Genomics

The research interests of my group are focused on applying high throughput genomic approaches to understand bacteria. Potential projects include:

Using Pseudomonas bacteria to protect plants from disease

Australia is home to a number of serious plant diseases, which, if left unchecked, could devastate our multibillion dollar agricultural industry. In modern agriculture diseases are typically controlled mainly through the use of agrochemicals, which are expensive and environmentally damaging. We are currently investigating a group of natural plant-associated bacteria that are able to act as biocontrol organisms suppressing infections from a range of important fungal, bacterial, viral and insect pests. This well-funded project will apply a combination of next-generation transcriptomic and proteomic technologies, as well as innovative genome-wide transposon mutagenesis methods to identify the key genes and gene clusters involved in biocontrol mediated by Pseudomonas bacteria.

Factors influencing the success of the pathogen Acinetobacter baumannii

The hospital intensive care unit should be a place of healing and care for the most vulnerable. Nonetheless, several microbial pathogens continue to plague this environment, causing serious infections in the immunocompromised patients that pose ever more challenging problems for clinicians. Acinetobacter baumannii has recently emerged as one of the most problematic hospital acquired pathogens worldwide due to its highly drug resistant nature. This project aims to define the key mechanisms of drug resistance operating in clinical A. baumannii isolates using a combination of cutting-edge next-generation transcriptomics and proteomics, and essential resistance genes identified by saturation mutagenesis methods. An alternative project in collaboration with A. Prof. Bridget Mabbutt uses structural and functional genomics to characterize laterally-acquired genes in A. baumannii that might help it flourish in clinical settings.

Molecular ecology of an ancient symbiosis between sponges and bacteria

Marine sponges are crucial members of marine ecosystems that are often overlooked despite being a dominant and ubiquitous component of the sea bed. Research involving sponges is linked to various scientific aspects from environmental and evolutionary studies to biotechnological and medical applications, with anti-cancer drugs and anti-HIV products derived from sponges. A large proportion of species contains sponge-specific photosynthetic symbionts related to free-living cyanobacteria, which are abundant and key primary producers of marine environments. This projects aims to elucidate the molecular basis of the stable symbiosis of these two modern day "fossils", using a combination of traditional and next-generation genomics and transcriptomics.

Genomics and Ecology of Marine Cyanobacteria in Australian Waters

Tiny single-celled marine cyanobacteria constitute up to two thirds of all marine productivity. As the base of the marine food-web, the activity of these organisms impacts on all marine life. Using a rapid molecular diagnostic we will perform the first survey of the environmental distribution of marine Synechococcus cyanobacteria along ecosystem gradients of the Australian Coast. Representative isolates will be selected for further study to identify key genes and proteins involved in adaptation to tropical and temperate habitats. This is a multidisciplinary project that will combine elements of fieldwork with the latest generation molecular techniques to understand the spatial and seasonal distribution of locally adapted ‘ecotypes’. Understanding the environmental factors that affect the abundance and activity of these organisms is fundamental to predicting the impacts of climate change on our local marine resources.

Unraveling the mysteries of Nullarbor microbial slime communities

Hidden beneath Australia’s large, dry Nullarbor desert lies an extensive underwater cave system, where microbial communities known as ‘slime curtains’ exist. In the absence of photosynthesis and other nutrient inputs from above, the cave communities may derive their energy from the oxidation of inorganic compounds in cave waters. Preliminary analyses indicate these communities contain a wide range of novel organisms including archaeal species which may use ammonia as an energy source. This project will explore the diversity of microorganisms inhabiting different cave environments using a range of cutting-edge metagenomic analysis techniques. There is also potential for investigating these communities using quantitative PCR, gene cloning and expression, and microscopy e.g,. fluorescent in situ hybridization (FISH).

Nullabor hns image.png

Fig. Microbial slime curtains in Nullabor limestone caves

Personal tools